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Abstract
Operator-Schmidt decompositions of the quantum Fourier transform on
C

N1 ⊗ C
N2 are computed for all N1, N2 � 2. The decomposition is shown to

be completely degenerate when N1 is a factor of N2 and when N1 > N2. The
first known special case, N1 = N2 = 2n, was computed by Nielsen in his study
of the communication cost of computing the quantum Fourier transform of a
collection of qubits equally distributed between two parties (M A Nielsen 1998
PhD Thesis University of New Mexico ch 6 Preprint quant-ph/0011036). More
generally, the special case N1 = 2n1 � 2n2 = N2 was computed by Nielsen et al
in their study of strength measures of quantum operations (M A Nielsen et al
2002 Preprint quant-ph/0208077 (2003 Phys. Rev. A at press)). Given the
Schmidt decompositions presented here, it follows that in all cases the bipartite
communication cost of exact computation of the quantum Fourier transform is
maximal.

PACS number: 03.67.−a

1. Introduction

Operator-Schmidt decompositions are useful for quantifying the nonlocal nature of operators
on finite-dimensional bipartite Hilbert spaces. The first special cases of Schmidt
decompositions of the quantum Fourier transform were computed by Nielsen [1] to illustrate
his study of coherent quantum communication complexity. He considered the following
problem:

Suppose Alice is in possession of m qubits, Bob is in possession of n qubits, and they
wish to perform some general unitary operation U which acts on their m + n qubits.
How many qubits must be communicated between Alice and Bob for them to achieve
this goal?
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Nielsen proved that the number Q0(U) of such qubits was bounded by

1/2 × KHar(U) � Q0(U) � 2 min(n,m) (1)

where the Hartley strength KHar satisfies

KHar(U) ≡ log2(Sch(U))

where Sch(U), defined in definition 4 below, is the number of nonzero Schmidt coefficients of
U. The upper bound of (1) is trivial, for Alice could simply send her qubits to Bob and let him
send them back after performingU, or vice versa. To illustrate his theorem, Nielsen considered
the quantum Fourier transform F2n×2n on n + n qubits. He showed that KHar(F2n×2n) = 2n,

yielding n � Q0(F2n×2n ) � 2n. Subsequent work by Nielsen [2] improved the general lower
bound of (1) by a factor of two1, in particular implying that

Q0(F2n×2n ) = 2n.

In a later paper [3], Nielsen and collaborators further employ operator Schmidt
decompositions in the quantitative study of strength measures of the nonlocal action of unitary
operators2. Besides revisiting the Hartley strength, among the several strength measures
considered is the Schmidt strength,

KSch(U) = H

({
λ2

k

dim(H ⊗ K)

})
where U is a unitary operator on H⊗K, {λk} are its Schmidt coefficients, and H is the Shannon
entropy. They give a Schmidt decomposition of F2m×2n on m + n qubits for the case m � n

and conjecture that Sch (F2m×2n ) = 22n for m > n.

1.1. Results

Schmidt decompositions of the quantum Fourier transformFN1×N2 : C
N1 ⊗C

N2 → C
N1 ⊗C

N2

are given for all N1, N2 > 1, with no requirement that either N1 or N2 be a power of two.
As a special case, the conjecture of Nielsen and collaborators is affirmed. In all cases, the
results of Nielsen imply that the bipartite communication cost of exact computation of the
quantum Fourier transform is maximal. Once stated, the decomposition is easily verified; a
short derivation is given in the appendix.

1.2. Definitions and notation

Definition 1. Let N,N1, N2 be integers greater than one satisfying N = N1N2. The quantum
Fourier transformation3 FN : C

N → C
N is the unitary operator satisfying

FN |s〉N = 1√
N

N−1∑
t=0

exp

(
2π i

N
ts

)
|t〉N s ∈ {0, . . . , N − 1}

1 See also footnote for a brief outline of an alternative proof. We remark that Nielsen considers qubits for convenience
only. In particular, let V be a unitary on C

N1 ⊗ CN2 , where N1 and N2 are the respective dimensions of Alice and
Bob’s quantum states, with no requirement that N1 and N2 be a powers of two. Then any quantum computation of
V employing some combination of qudit communication and ancillae, possibly of varying dimension, satisfies the
following bound:

∑∞
d=2 Nd log2(d) � KHar(V ), where Nd is the number of qudits of dimension d communicated

between Alice and Bob. It is assumed at the end of the computation that Alice and Bob retain possession of their
(now altered) data qudits, although the bound holds whether or not a given net transfer of the (restored) ancillae is
allowed.
2 They also consider more general quantum operations than unitaries.
3 This is unitarily equivalent to the discrete Fourier transform.
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where each |s〉N is a standard basis element. The quantum Fourier transformation FN1×N2

on C
N1 ⊗ C

N2 is obtained by identifying C
N with C

N1 ⊗ C
N2 under the mixed-decimal

representation, which asserts the equalities

|s〉N = |k�〉N1,N2 = |k〉N1 ⊗ |�〉N2

when

s = kN2 + � . . . k ∈ {0, . . . , N1 − 1} � ∈ {0, . . . , N2 − 1}.

Remark 2. In the case that N1 �= N2, the reader is warned that the operator FN1×N2 is not
equivalent in what follows to FN2×N1 . Specifically, FN does not commute with the unitary
operator RN1,N2 : C

N → C
N given by

RN1,N2 |kN2 + �〉 = |�N1 + k〉 k ∈ {0, . . . , N1 − 1} � ∈ {0, . . . , N2 − 1}
which interchanges the digits of the mixed-decimal representation.

Notation 3. Let H be a finite-dimensional Hilbert space. Then B(H) is the Hilbert space of
linear transformations on H with the Hilbert–Schmidt inner product 〈A,B〉B(H) = Tr A†B.4

Definition 4. Let H and K be finite-dimensional Hilbert spaces, and let F be a nonzero linear
transformation on H ⊗ K. An (operator) Schmidt decomposition of F is a decomposition of
the form

F =
Sch(F )∑
k=1

λkAk ⊗ Bk λk > 0 (2)

where {Ak}k=1···Sch(F ) and {Bk}k=1···Sch(F ) are orthonormal sets5 of operators on H and K,
respectively, under the Hilbert–Schmidt inner product. The quantity Sch(F ) is called the
Schmidt number, and the λk are called the Schmidt coefficients. Such a decomposition
is said to be completely degenerate if Sch(F ) = (min (dimH, dimK))2 and all the λk are
equal6.

We remark that the operator-Schmidt decomposition is just a special case of the well-
known Schmidt-decomposition

ψ =
Sch(ψ)∑
k=1

λkek ⊗ fk λk > 0

of a vector ψ ∈ H0 ⊗ K0, where the {ek} and {fk} are orthonormal7. In particular, one sets
H0 = B(H), K0 = B(K) and ψ = F ∈ B(H ⊗ K). The decomposition (2) is then obtained
by identifying B(H) ⊗ B(K) with B(H ⊗ K) under the natural isomorphism8. It follows that
4 If A is a linear operator on H, then A† is defined by 〈x, Ay〉H = 〈A†x, y〉H for all x, y ∈ H. Here 〈•, •〉H is the
inner product on H, and we will always take inner products to be linear in the second argument.
5 But not necessarily bases.
6 More generally, if F : H ⊗ K → H′ ⊗ K′, then one may consider decompositions of the form (2), where
now the Ak : H → H′ and Bk : K → K′ are orthornormal. Such a useful decomposition exists for the
communication operator C : (Cn1 ⊗ C

n2 ) ⊗ C
n3 → C

n1 ⊗ (Cn2 ⊗ C
n3 ), defined by C(a ⊗ b) ⊗ c = a ⊗ (b ⊗ c).

One may check that C = ∑n2
k=1

√
n1n3Ak ⊗ Bk , where Ak = n

−1/2
1

∑n1
i=1 |i〉 〈ik| : C

n1 ⊗ C
n2 → C

n1

and Bk = n
−1/2
3

∑n3
i=1 |ki〉〈i| : C

n3 → C
n2 ⊗ C

n3 . Replacing the swap operators in section III.B.3 of [3]
by communication operators, one obtains the aforementioned sharp quantum communication complexity bound
of [2].
7 See [4] for a discussion of the Schmidt decomposition.
8 In particular, there exists a unique unitary � : B(H) ⊗ B(K) → B(H ⊗ K) such that (�(A ⊗̃ B))(f ⊗ g) =
(Af ) ⊗ (Bg) for all f ∈ H and g ∈ K. Here ⊗̃ denotes the defining tensor product of B(H) ⊗ B(K), considering
B(H) and B(K) as abstract Hilbert spaces.
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F and G in B(H⊗K) � B(H)⊗B(K) have the same operator-Schmidt coefficients, counting
multiplicity, iff

A = (U ⊗ V)B

for some unitary ‘super-operators’ U ∈ B (B(H)) and V ∈ B (B(K)).9

The well-known procedure for computing Schmidt decompositions is reviewed in
theorem 8 of the appendix. We content ourselves here with the statement that the Schmidt
coefficients of ψ ∈ H0 ⊗ K0 are the square roots of the nonzero eigenvalues of the reduced
density matrix

ρψ = Tr
K0

|ψ〉〈ψ|.
Equivalently, the Schmidt coefficients are the nonzero singular values of the operator
Bψ : H0 → K∗

0 given by

(Bψf )(g) = 〈ψ, f ⊗ g〉H0⊗K0

where K∗
0 is the dual space of continuous linear functionals on K0.10

2. Schmidt decomposition of F

Notation 5. Let ZN1 = {0, . . . , N1 − 1} , ZN2 = {0, . . . , N2 − 1} , Z
2
N2

= ZN2 ×ZN2 , N1Z
2 =

{(N1x,N1y)|x, y ∈ Z}, x� = min{n ∈ Z|n > x} and �x� = −−x�. Denote the cardinality
of a set C by |C|. Its characteristic function χC satisfies

χC(x) =
{

1 if x ∈ C

0 if x /∈ C
.

Adopt the convention n mod m ∈ Zm.

Theorem 6. Define an equivalence relation ∼ on Z
2
N2

by

�� ∼ �m ⇐⇒ �� − �m ∈ N1Z
2

where the subtraction is not modular, and define M = Z
2
N2

/ ∼ to be the set of equivalence
classes11. Then a Schmidt decomposition of FN1×N2 is given by

FN1×N2 =
∑
C∈M

√
N1

N2
|C|AC ⊗ BC (3)

where the matrices of AC : C
N1 → C

N1 and BC : C
N2 → C

N2 are defined by

(AC)k1k2 = 1

N1
exp

[
2π i

N1
(N2k1k2 + k1c̃2 + k2c̃1)

]
k1, k2 ∈ ZN1

(BC)�1�2 = 1
|C|1/2 exp

(
2π i

N
�1�2

)
χC((�1, �2)) �1, �2 ∈ ZN2

with each (c̃1, c̃2) ∈ C arbitrarily chosen. (AC does not depend on this choice.)
9 See exercise 2.80 of [4]. One would like to know much more, i.e. invariants which specify when there are local
unitaries U, Y ∈ B(H) and V,Z ∈ B(K) such that A = (U ⊗ V )B(Y ⊗ Z). Such invariants are known only in the
two-qubit case [5], where one has the corresponding canonical decomposition of Khaneja et al [6] (see also Kraus
and Cirac [7] for a simple ‘magic basis’ proof.)
10 See [4] for a proof that the Schmidt decomposition is a consequence of the singular value decomposition. In fact
they are mathematically equivalent.
11 The reader may check that for N1 = 2 and N2 = 3 M consists of {(0, 0), (0, 2), (2, 0), (2, 2)}, {(1, 0), (1, 2)},
{(0, 1), (2, 1)} and {(1, 1)}.
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Proof. It is trivial to check that {AC} and {BC} are orthonormal sets. Furthermore, for
k1, k2 ∈ ZN1 and �1, �2 ∈ ZN2 ,

〈k1, �1|
( ∑

C∈M

√
N1

N2
|C|AC ⊗ BC

)
|k2, �2〉 =

∑
C∈M

√
N1

N2
|C|〈k1|AC|k2〉〈�1|BC |�2〉

=
∑
C∈M

1√
N

exp

[
2π i

N

(
N2

2 k1k2 + N2k1c̃2 + N2k2c̃1 + �1�2
)]

χC((�1, �2))

=
∑
C∈M

1√
N

exp

[
2π i

N

(
N2

2 k1k2 + N2k1�2 + N2k2�1 + �1�2
)]

χC((�1, �2))

= 1√
N

exp

[
2π i

N
(N2k1 + �1)(N2k2 + �2)

]
= 〈k1�1|FN1×N2 |k2, �2〉

as desired. �

The reader may find it instructive to compute the linear spans of the matrices BC

corresponding to each of the Schmidt coefficients.

Corollary 7. The Schmidt decompositions of FN1×N2 fall into three categories:

(i) If N1 is a factor of N2, then there is only one Schmidt coefficient,
√

N2/N1, with multiplicity
N2

1 .
(ii) If N1 � N2, there is only one Schmidt coefficient,

√
N1/N2, with multiplicity N2

2 .
(iii) Otherwise, FN1×N2 has three distinct nonzero Schmidt coefficients:√⌈

N2

N1

⌉2
N1

N2
multiplicity (N2 mod N1)

2

√⌈
N2

N1

⌉ ⌊
N2

N1

⌋
N1

N2
multiplicity 2 (N2 mod N1)((−N2)modN1)

√⌊
N2

N1

⌋2
N1

N2
multiplicity ((−N2)mod N1)

2.

In all cases, the Schmidt number of FN1×N2 is min
(
N2

1 , N2
2

)
. In particular, the Schmidt

decomposition is completely degenerate in Cases 1 and 2.

We remark that the previously known cases fall under Case 1. Case 2 verifies the Schmidt
numbers conjectured in [3]. Since the Schmidt decomposition in Case 1 (or Case 2) is
completely degenerate, theorem 8 (below), may be used to find a Schmidt decomposition of
the form of equation (2) for any orthonormal basis {Ak} (or {Bk}, in case 2)12.
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Appendix. A derivation

It will soon be apparent that the crucial fact which allows easy calculation of a Schmidt
decomposition of F is the following: No two of the BC have a nonzero matrix entry in the
same place.

The well-known computational recipe needed here is summarized in

Theorem 8. Let ψ ∈ H ⊗ K be nonzero. If

ρK ≡ Tr
H

|ψ〉〈ψ| =
∑
�∈L

µ�|f�〉〈f�|

is a spectral decomposition of the reduced density matrix, then a Schmidt decomposition of ψ

is given by

ψ =
∑

{�|µ�>0}

√
µ�e� ⊗ f� (4)

where each e� is defined by the requirement that

〈ψ, v ⊗ f�〉H⊗K = √
µk〈e�, v〉H (5)

for all v ∈ H. Furthermore, all Schmidt decompositions of ψ may be exhibited in this manner.

Derivation of theorem 6. We follow the prescription of theorem 8, and employ the natural
isomorphism B(CN1) ⊗ B(CN2) � B(CN1 ⊗ C

N2), as explained in section 1.2. The reduced
density superoperator ρ ∈ B(B(CN2)) is defined by the equation

〈A, ρB〉B(CN2 ) =
∑
E

〈E ⊗ A,F〉B(CN1 ⊗C
N2 )〈F, E ⊗ B〉B(CN1 ⊗C

N2 )

for arbitrary A,B ∈ B(CN2), where E runs over a basis of B(CN1). For �j ∈ Z
2
N1

and �� ∈ Z
2
N2

define the standard basis elements

E �j = |j1〉〈j2| ∈ B(CN1) F�� = |�1〉〈�2| ∈ B(CN2).

We compute ρ by studying its matrix coordinates

ρ�� �m = 〈F��, ρF �m〉B(CN2 ).

Similarly, let

F �j �� = 〈E �j ⊗ F��,F〉B(CN ).

Then

ρ�� �m =
∑
�j∈Z

2
N1

F �j ��F̄ �j �m

= 1

N

N1−1∑
j1=0

N1−1∑
j2=0

(
exp

(
2π i
N

(N2j1 + �1)(N2j2 + �2)
)

× exp
(− 2π i

N
(N2j1 + m1)(N2j2 + m2)

)
)

= 1

N
exp

(
2π i

N
(�1�2 − m1m2)

)

×
N1−1∑
j1=0

exp

(
2π i

N1
(�2 − m2)j1

)
×

N1−1∑
j2=0

exp

(
2π i

N1
(�1 − m1)j2

)
.

Evaluating the appropriate inverse-Fourier transforms,

ρ�� �m ≡ N1

N2
exp

(
2π i

N
(�1�2 − m1m2)

)
× χN1Z

2(�� − �m). (6)
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The spectral decomposition of ρ into a linear combination of projections may be simply read
off from the asymptotic n → ∞ behaviour of (6) to the power of n ∈ Z

+.13 One need not do
this, however, for using the identity

χN1Z
2(�� − �m) =

∑
C∈M

χC(��)χC( �m)

equation (6) may be rewritten as

ρ =
∑
C∈M

N1

N2
|C| × |BC〉〈BC |

where the BC are orthonormal, as noted before. The AC are easily computed using (5). �
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